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described next in subsection b., below, and are now in the final stages of these analyses, which we expect to complete in 
during the No Cost Extension period. 

c). What was accomplished under these goals at the UC San Diego Site? 
For our initial resting state fMRI analyses of intrinsic networks, we used data from 49 ASD and 49 TD infants and 

toddlers. The following sections describe design and results of these first studies aiming to identify aberrant intrinsic 
connectivity patterns in ASD at the age of first clinical detection: 

Subjects 
Subjects were 49 ASD and 49 TD one-to-one gender- and age- matched infants and toddlers. Each group 

contained 17/49 (35%) females. The ages ranged from 13.2 to 44.5 months with a mean of 26.5 months (SD=8.9 months) 
in All subjects received a battery of psychological tests and final diagnoses were confirmed by licensed clinical 
psychologists at the Courchesne lab.  

MRI Structural Imaging 
To obtain multiple neuroanatomical surface and volumetric measures, all subjects received a T1-weighted 

anatomical scan with 1x1x1mm isotropic voxels. Our processing pipeline produces multiple detailed anatomic measures 
(e.g., regional cortical gradients of gray matter (GM), surface area (SA), gyrification index (GI), thickness and volumes of 
white matter (WM), volumes of cerebellar GM and WM, GM volumes of amygdala and striatum). It uses a combination 
of FSL, BrainVisa and FreeSurfer for accurate measurement of brains as young as 12 months and allows for easy 
identification of errors due to automated large batch processing. We used FSL’s FLIRT to register the brains to a custom 
template consisting of an infant brain that has been registered into MNI space. GM, WM and CSF were segmented with 
FSL’s FAST algorithm. We modified the algorithm to use partial volumes of voxels rather than neighboring voxels in 
order to accurately segment the small white matter tracts in temporal lobe and partial volumes of sulcal CSF at this early 
stage in brain development when white matter tracts are not yet robust enough to be picked up by traditional segmentation 
algorithms. A Matlab algorithm, adaptive disconnection, then parcellated the brain into cerebral hemispheres, cerebellar 
hemispheres, and brainstem. Cerebral and cerebellar hemispheres and subcortical structures entered separate processing 
streams. Subcortical structures were automatically identified and quantified in FreeSurfer. Cerebral hemispheres and sulci 
were reconstructed in BrainVisa and recombined with the original FSL segmentation to reconstruct the original surface 
morphology of each child’s cortex. Each subject’s individual anatomy was used to identify cortical subregions for 
measurement, allowing for measurement of unusual folding and hypergyrification. The method was optimized for 
measurement of surface area within the tight sulci of the infant brain and can be applied to unusually large as well as 
unusually small cortex.  

Resting State Imaging 
Our highly successful natural sleep neuroimaging procedure was used to acquire fMRI and MRI data on a GE 

1.5T scanner at UC San Diego RIL Center.  Key features of the procedure include mild sleep deprivation on the preceding 
night, vigorous physical activity on scan day, and scans that commence one hour past normal bedtime. Once asleep in the 
scan room weighted blankets and gradual habituation to scanner noises were used to promote continued sleep. Scanning 
began about 10 minutes after sleep onset and lasted approximately 30 minutes. In the first published sleep MRI-EEG 
study of toddlers and young children, Drs. Fox, Courchesne and Manning demonstrated that children go into Stage 3 slow 
wave sleep within the first 5-10 minutes after nighttime sleep onset, and stay in that stage for about 45 min, thus allowing 
ample time for data collection while within a single sleep stage.  Resting state fMRI was conducted with a 1.5T GE 
scanner using a T2*-weighted EPI sequence with the following parameters: TR = 2.5 s, TE = 30 msec, voxel size of 4 x 4 
x 4 mm. The scan lasted for 6 minutes and 25 seconds in the absence of any stimulation, and 154 volumes were acquired.  

Data Analysis 
Preprocessing of the resting state data was split into two components; core preprocessing and denoising. Core 

preprocessing is implemented with AFNI (http://afni.nimh.nih.gov/) using the tool speedypp.py (http://bit.ly/23u2vZp) 
written by Prantik Kundu (Kundu et al., 2012, Neuroimage). This core preprocessing pipeline included the following 
steps: (i) slice acquisition correction using heptic (7th order) Lagrange polynomial interpolation; (ii) rigid-body head 
movement correction to the first frame of data, using quintic (5th order) polynomial interpolation to estimate the 
realignment parameters (3 displacements and 3 rotations); (iii) obliquity transform to the structural image; (iv) affine co-
registration to the skull-stripped structural image using a gray matter mask; (v) nonlinear warping to MNI space (MNI152 
template) with AFNI 3dQwarp; (v) spatial smoothing (6 mm FWHM); and (vi) a within-run intensity normalization to a 
whole-brain median of 1000. Core preprocessing was followed by denoising steps to further remove motion-related and 
other artifacts. Denoising steps included: (vii) wavelet time series despiking (‘wavelet denoising’); (viii) confound signal 
regression including the 6 motion parameters estimated in (ii), their first order temporal derivatives, and ventricular 



1. INTRODUCTION
Resting state functional magnetic resonance imaging (rsFMRI) and the analysis of intrinsic functional 

connectivity are powerful tools for characterizing functional networks in pediatric and clinical populations. In infants and 
toddlers who are scanned during natural sleep, rsFMRI has been used to characterize the development of intrinsic 
functional networks during resting states 1-6.  Not only has this body of work revealed that disruptions in early 
development, such as pre-term birth, can result in measurable changes in these intrinsic networks 1,4, but it has also shown, 
perhaps surprisingly, that the majority of them are fully or mostly formed by age 2 6-9.   Furthermore, intrinsic sensory 
networks seem to emerge earliest and present adult-like topology by birth, while intrinsic networks involved in higher 
order functions merge later. Specifically, the default mode network (DMN) and the dorsal attention network (DAN) 
emerge by age 1 and the salience and fronto-parietal control networks emerge by age 2 8,9.  Moreover, by age 1 year, the 
DMN and DAN (also known as the task-negative and task-positive networks due to their relative deactivation and 
activation while performing a cognitive task) demonstrate their characteristic anticorrelated relationship and these 
anticorrelations increase in the second year of life (Gao et al. 2013).  After infancy and toddlerhood, these various 
networks become further refined and the relationships between them change.  

New cellular, molecular and genomic evidence indicates autism spectrum disorder (ASD) begins prenatally, most 
likely by or before the late second trimester 10-15 as do ASD animal model studies 16-18.  Prenatal maldevelopment in ASD 
involves dorsolateral and mesial prefrontal cortex, temporal cortex, amygdala and cerebellum 19. These are among the key 
structures that mediate the normal development and function of the higher-order intrinsic networks described above, such 
as DMN and DAN. New diffusion tensor imaging (DTI) and activation-based fMRI from the Courchesne lab report the 
presence of structural and functional abnormality in these structures by ages 1 to 2 years in ASD 20-25.  Therefore, we 
hypothesize that the early neural maldevelopment of these key structures disrupts the normal formation and function of 
these important higher-order intrinsic networks, which underlie social, communication, cognitive and attention functions. 
Remarkably, these networks have not been well studied in ASD at the earliest ages. This is a major gap in basic and 
clinical knowledge.  Such knowledge could open new avenues of basic genomic and animal model research that can 
elucidate the developmental neural biological bases of ASD and early clinical diagnostic and prognostic biomarker 
research.  

The Courchesne lab has gathered the largest existent sample of resting state fMRI data from ASD infants and 
toddlers.  With this invaluable resource, we will identify early developmental patterns of intrinsic functional network 
abnormalities in ASD infants and toddlers as compared with typically developing (TD) controls. Because the Courchesne 
lab routinely also collects longitudinal clinical data from all infants and toddlers, analyses will also investigate whether 
there may be subtypes of abnormal intrinsic connectivity patterns based on early clinical presentation and/or on later 
clinical outcome, such as language and social outcome by ages 3 to 4 years. 

2. KEYWORDS
Autism spectrum disorder, ASD, early brain development, intrinsic functional brain networks, fMRI, infants, 

toddlers, clinical presentation, clinical outcome, default mode network, biomarker 

3. ACCOMPLISHMENTS
What were the major goals at the UC San Diego Site during this past year? 

a) Staffing at UC San Diego
We hired Dr. Michael Datko as a 100% time postdoc for the project starting in October 2015; he was a recent 
graduate of the Cognitive Science PhD program at UC San Diego, where he studied autism using functional 
neuroimaging methods.  

b) Specific Aim 2 (UC San Diego Site):
i. Major Task 1: ASD MRI Data Pre-Processing (Subtasks 1 and 2). Subtask 1 was to preprocess all MRI

structural data.  Previously, this had been done for some subjects using FreeSurfer version 5.1, and we have reprocessed 
the original data plus newer data, amounting to a total of 612 MRI scans. Subtask 2 was to preprocess all resting state 
fMRI data and has been completed for N=331 total subject scans.  Many scans from that dataset are from subjects who 
were not clearly ASD or TD, but had other diagnoses such as developmental delay, typical sibling of another ASD 
individual, or language delay.  For the connectivity analyses reported below, 9 subjects whose data is in our first set of 
intrinsic connectivity analyses (see below). Milestone #1 under this Task 1 (data pre-processing of this n=98 subject fMRI 
and MRI dataset) was accomplished by March 2016. (see section 5. Changes). 

ii. Major Task 2: Intrinsic Connectivity Analyses in ASD and TD Subjects.  This Milestone #2 is to be
completed in Year 2 of the project.  This past year we performed intrinsic connectivity analyses in ASD and TD subjects 



cerebrospinal fluid (CSF) signal (referred to as 13-parameter regression). The wavelet denoising method has been shown 
to mitigate substantial spatial and temporal heterogeneity in motion-related artifact that manifests linearly or non-linearly 
and can do so without the need for data scrubbing (Patel et al., 2014, Neuroimage). Wavelet denoising is implemented 
with Ameera Patel’s Brain Wavelet toolbox (http://www.brainwavelet.org). The 13-parameter regression of motion and 
CSF signals was achieved using AFNI 3dBandpass with the -ort argument. To further characterize and describe motion 
and its impact on the data, we computed framewise displacement and DVARS (Power et al., 2012, Neuroimage). 
Examples of how denoising impacts high and low motion subjects can be found in the Supplementary Material.  Between-
group comparisons showed that both groups were similar with respect to motion (framewise displacement) (F(1,97) = 
2.48, p = 0.1183, Cohen’s d = 0.1701). Furthermore, mean DVARS measurements were similar across all groups before 
(F(1,97) = 2.08, p = 0.1523, Cohen’s d = 0.4529) and after denoising (F(1,97) = 0.39, p = 0.5363, Cohen’s d = 0.1073). 
Both of these results indicate that motion did not asymmetrically affect one group more than the others.   

Next, a seed-based approach was used to calculate, for each subject, the correlation between the average 
timecourse of each seed with that of every other seed. Seed regions of interest (ROIs) used for the functional connectivity 
analyses were based on a comprehensive cortical parcellation map derived from a resting state boundary mapping 
technique (Gordon et al., 2014).  This map divides the cortex into 333 parcels whose resting state BOLD signal is 
maximally distinct from their neighbors’.  They also used a network detection technique referred to as Infomap (Rosvall 
& Bergstrom, 2008; Fortunato, 2010) to categorize each of their parcels into one of eleven networks.  Using these 333 
Gordon ROIs, we created a custom set of seed ROIs, many of which represented a consolidation of some smaller, 
neighboring parcels.  This was accomplished by consolidating parcels from the same network that shared a border with 
each other.  This resulted in 64 seed regions belonging to one of nine different networks, including auditory, cingulo-
opercular, default mode, dorsal attention, frontoparietal, retrotemporal-splenial, somatomotor, ventral attention, and visual 
networks (Figure 1).   

Figure 1. Networks of parcels used as 
seed regions for functional connectivity 
analyses.   

Average time courses of the 
BOLD signal for each participant's resting 
state scan were obtained for each of the 
64 seed ROIs. Pairwise correlations were 
obtained for the signal between each 
possible pair of seeds, for a total of 2016 
pairs.  Even though the groups were well 
matched for both age and sex, linear 
regression was used to eliminate any 
remaining variability associated with 
these factors from the pairwise signal 
correlations.  The global signal was not 
removed from the individual ROI time 

series, based on findings that this signal may contain clinically relevant information (Hahamy et al., 2016).  

To ensure that any effects we observed in our final analyses were not simply related to an idiosyncrasy of one 
particular set of ROIs, we also performed analyses with the full set of 333 ROIs from the Gordon parcellation, as well as 
with a set of 264 spherical ROIs based on work by Powers and colleagues (2011).  Figures and results for these 
complementary ROI sets can be found in the Supplement.   

Summary of Main Results 

1. Within- and between-network functional connectivity

A preliminary analysis looked at whether correlations between each pair of networks differed between ASD and 
TD. We categorized each of the 2016 possible pairwise correlations between the 64 seed ROIs by the network or networks 
to which each of its two ROIs belonged.  We then averaged all the pairs for which each seed was part of the same network.  
For instance, all pairs that contained one seed in the DMN and one seed in the auditory network were included in the 
average for DMN-auditory connections.   



Connections for which both ROIs were part of the same network were defined as within-network connections 
(WNC) for that network, whereas connections for which each ROI belonged to a different network from the other were 
defined as between-network connections (BNC), relative to the network of the first ROI of the pair (Figure 2).  To look 
for overall effects of within- or between-network connectivity, we performed two ANOVAs with group (two levels, ASD 
and TD) and network (nine levels, each of nine networks) as factors.  The first of these ANOVAs used WNC strength as 
the dependent variable, whereas the second used BNC strength.   

Figure 2. Components of the 
within-network bias ratio 
measure.  The within-network 
component consists of the 
average connection strength of 
all node pairs within a network 
(all red connections in (a)). 
The between network 
component is the average 
connection strength of all node-
pairs where each node is a 
member of a different network 
(b). 

A preliminary analysis tested whether functional connectivity between each pair of networks differed between 
ASD and TD.  No significant group differences in network pairwise connection strength were found for any network pairs. 
Correlation matrices of average pairwise network connection strengths for each group are shown in Figure 3. 

Figure 3. Correlation matrix of pairwise 
network connection strength. TD in bottom left 
triangle and ASD in top right triangle. 



	
Figure 4. Within-network (left) and Between-Network (Out-of-Network) (right) connectivity for each of nine 
networks.  ASD = Red, TD = Blue.  DMN = default mode network; SM = Somatomotor; FrPar = frontoparietal; 
V.Attn = Ventral Attention; D.Attn = Dorsal Attention; CingOp = Cingulo-opercular; RTS = retrotemporal-
splenial; Aud = auditory.   

In an ANOVA using within-network connection strengths as the dependent variable, ASD and TD as the two 
levels of one independent factor, and each of the nine networks as levels in another factor, we found a significant main 
effect of network (F1,8 = 100.13, p<0.001), but neither a main effect of group (F1,8 = 0.43, p=0.514) nor a significant 
interaction (F1,8 = 0.67, p=0.721) (Figure 4).  In a similar ANOVA using the between-network connection strengths, there 
were significant main effects of group (F1,8 = 5.23, p=0.023) and network (F1,8 = 5.5, p<0.001), but no significant 
interaction (F1,8 = 0.08, p=0.999) (Figure 4). 	

2. Seed-to-Seed Connectivity 
 

An alternative approach to seed based functional connectivity with the 333 Gordon parcels was implemented with 
the Network-Based Statistics (NBS) Toolbox (Zalesky et al., 2010).  First, NBS performs mass univariate t-testing at each 
possible connection in the matrix of seed-to-seed connections (between ASD and TD), resulting in a t-statistic for each 
connection.  All connections whose between-group t-statistic exceeds a threshold (set by the experimenter) are admitted to 
a set of supra-threshold connections.  Among those connections, clusters are identified in topological (as opposed to 
physical) space, resulting in a connected graph component for which a path can be found between any two nodes.  Finally, 
a family-wise error rate-corrected p-value is computed for each connected graph component.  This is done using 
permutation testing to repeat the mass univariate testing and thresholding steps, with each permutation removing a random 
subset of subjects from each group.  A null distribution for the size of the largest component is formed consisting of the 
largest component from each permutation.  A FWER-corrected p-value for a component of a given size is then estimated 
as the proportion of permutations for which the largest component was of greater or equal size." 

Using the NBS method, we found one graph component, consisting of 22 connections (edges) between 20 seed 
ROIs (nodes), in which ASD showed significantly lower connectivity compared to TD (FWER-corrected p = 0.038).  Of 
the nodes in that component, 8 were in the default mode network, 8 were in the visual network, 2 were in the ventral 
attention network, and 2 were in the dorsal attention network (Figure 5).    



 
Figure 5.  Nodes and edges of graph component in which ASD showed significant hypoconnectivity compared to 
TD (FWER-corrected p = 0.038).   

 
3. Within-network Bias 

 We then defined the Within-Network Bias (WNB) for a given network as the difference between WNC and BNC 
divided by the sum of WNC and BNC for that network.  The average WNC and BNC values for each network were used 
to calculate WNB for each participant for each network using the formula: 

WNB = ( WNC – BNC ) / ( WNC + BNC ) 

Thus, WNB is the proportion of the total strength of all of one network’s pairwise connections that is accounted 
for by the connections between only nodes of that network.  Using WNB as the dependent variable, an ANOVA was 
performed with group (ASD and TD) and network (nine networks of interest) as independent factors.   

A follow-up analysis compared the groups on a more specific measure of WNB, including only specific networks, 
one at a time, in the between-network component of each network's WNB ratio. We included two primary sensory 
networks, visual and auditory, due to the previously observed presence of strong connections within those networks even 
at early ages (Fransson et al., 2009, 2011; Gao et al., 2014).  We also included the DMN in this analysis, due to previous 
studies suggesting the presence of a "proto-DMN" at early ages (Fransson et al., 2009), and due to the observation that the 
DMN is one of the first higher order, networks to develop "adult-like" structure in infants (Gao et al., 2009, 2014).  
Calculating this ratio between each combination of these networks in a pairwise fashion resulted in six different pairwise 
WNB values for each participant.  For example, WNBvisualàDMN = ( WNCvisual – BNCvisual à DMN ) / ( WNCvisual + BNCvisual à 

DMN ). Six between-group t-tests were used to determine if ASD and TD differed in pairwise WNB, and the resulting p-
values were Bonferroni-corrected for multiple comparisons.   



In an ANOVA using WNB as the dependent variable, and group and network factors identical to the previous two 
ANOVAs, (Figure 6), there were significant main effects for both the Group (F1,8 = 7.92, p=0.005) and Network (F1,8 = 
105.12, p<0.001) factors, but no significant interaction between these factors (F1,8 = 0.76,p=0.642).  Specifically, WNB 
was higher in ASD than TD groups regardless of network and WNB was highest in the sensorimotor network.  In t-tests 
comparing the groups on a measure of specific network-pairwise WNB between the default mode, visual, and auditory 
networks, ASD had significantly greater WNB for DMNWithinàVisualBetween and for VisualWithinàDMNBetween.  

	
Figure 6.  Within-Network Bias (WNB) for each of nine networks separately (left) and combined (right).  ASD = 
Red, TD = Blue. 	

4. Age-related trajectories of Within-Network Bias 

 For each network, we measured the correlation between participants’ WNB values and their ages.  We found the 
Pearson correlation between these values for each group separately, and tested whether each group’s correlation 
significantly differed from zero.  We then performed a Fisher's r-to-z' transformation for each group's age-connectivity 
correlations.  To test whether ASD and TD differed in their developmental trajectories for Within-Network Bias, we 
performed separate t-tests between the z' values for the two groups’ age correlations.  This resulted in a between-group t-
score and p-value for each age correlation.  ASD showed significantly different relationships, compared to TD, between 
age and WNB for the auditory (TD r = -0.26, TD p = 0.068; ASD r = 0.28, ASD p = 0.053; between-group p = 0.00027) 
and retrotemporal-splenial (TD r = -0.20, TD p = 0.168; ASD r = 0.21, ASD p = 0.157; between-group p = 0.007) 
networks (Figure 7).   

We followed this up by conducting similar between-group tests for the correlation between age and specific 
network-to-network WNB values, for the three networks examined in the previous section (DMN, visual, and auditory) 
(Figure 7).  Among these six pairwise network WNB-age correlations, WNB appeared to increase with age in ASD but 
decrease with age in TD for AuditoryW/DMNB, AuditoryW/VisualB, and VisualW/AuditoryB.   



	
Figure 7.  Significant correlations between pairwise WNB ratios and participant age. AuditoryWithin/DMNBetween (A), 
AuditoryWithin/VisualBetween (B), and VisualWithin/AuditoryBetween (C).   

 
d. What opportunities for training and professional development has the project provided at the UC San 

Diego Site? 
While a major goal of the project at our site was not to provide training and professional opportunities, we 

nonetheless were able to do so.  Much of the work in this progress report was completed by Dr. Michael Datko, the post-
doc who was hired for this project. Though he already had a background in fMRI processing and analysis, as well as 
literature on ASD, he has continued to grow in these areas and has developed pipelines using advanced statistical analysis 
techniques involving multiple regression and mass univariate testing. Mike is in the lab on a daily basis and has given 
numerous presentations on his data during lab meetings.  He is currently working on multiple papers based on the work 
we report here.   
 

e. How were the results disseminated to communities of interest? N/A 
 

f. What do you plan to do during the next reporting period to accomplish the goals? 
As stated below in Item 5, we completed an initial set of region-seed based analyses of three intrinsic networks in 

these N-98 subjects.  We are largely done with these main analyses (as described above) and these will be completed 
during the No Cost Extension period.  These are among the first ever studies of the intrinsic connectivity patterns in 
infants and toddlers with ASD at the age of first clinical identification.  

In addition, in the coming year, we anticipate analyses of additional seed locations based on Dr. Fox’s meta-
analyses connectivity modeling as well as analyses, such as partial least squares (see Courchesne and colleagues, Neuron, 
April 2015), that could also provide direct brain-clinical behavior relationships and identification of intrinsic network-
clinical outcome subtypes in ASD.  Furthermore,  

 
 

4. IMPACT 
 a. What is the impact on understanding ASD brain development of the project? 



Our initial intrinsic connectivity analyses of ASD at the age of first clinical diagnosis provides evidence of significant and 
widespread disruptions in the functional networks that are crucial for basic sensory and higher-order cognitive functions 
(Section 3. ACCOMPLISHMENTS, above).  

We found evidence instead for a bias towards within-network connectivity in ASD infants and toddlers.  Over all 
the networks examined, although not in any particular network, we found that stronger within-network connections 
accounted for significantly more of the total connection strength compared to between-network connections, in the ASD 
group compared to the TD group.  All networks for both groups showed positive WNB values, indicating that, as 
expected, within-network connectivity was universally stronger than between-network connectivity.  This was particularly 
true for primary sensory networks, including those supporting sensorimotor, visual, and auditory functions.  

The global effect of higher WNB in our ASD sample suggests that early brain networks in ASD are perhaps more 
isolated than would be expected for a developmental period that has previously been characterized by a balance between 
increasing within-network connectivity alongside the development of more interregional connections.  Gao and colleagues 
(2014) found during the first two years of life, typical infants showed greater within-network connectivity and a mix of 
increased and decreased between-network connectivity.  Whether any two networks became more or less functionally 
segregated from each other during this period depended on the functional and developmental relationship between them.  
However, the age range of our sample only partially overlaps with the younger range of Gao’s study.  While they 
observed the strongest changes in functional connectivity over the period from birth to 12 months of age, with only 
modest changes from 12 to 24 months, our sample’s ages range from 12 to 48 months.  

Our finding of globally increased WNB is also a sharp contrast to studies of ASD adolescents and adults who 
show reduced within-network integration (i.e., hypoconnectivity) and reduced between-network segregation (i.e., 
hyperconnectivity) (Rudie et al., 2012).  One possible explanation is that in adolescents and adults, the process of synaptic 
pruning and network maturation has been dysregulated for years, resulting in an excess of connections between networks 
which would typically have developed more distinct, segregated functional properties.  But the first stages of that process 
involve an early overgrowth of connections, possibly manifesting at the level of functional connectivity as the within-
network bias we have reported here.  

Using the Network-Based Statistic developed by Zalesky and colleagues (2010), we found a connected graph 
component, consisting of seeds from 4 different networks, that showed significantly lower functional connectivity in ASD 
compared to TD participants.  Notably, most of the connections in this component were between nodes of the visual and 
default mode networks, with a small number of nodes also belonging to the dorsal and ventral attention networks.  While 
the DMN has received substantial attention in the adolescent and adult ASD literature, with many studies reporting 
atypical patterns of functional activation and connectivity (Assaf et al., 2010; Lynch et al., 2013; Starck et al. 2013; 
Washington et al., 2014), this is the first study to show hypoconnectivity between and within the DMN and visual 
networks in infants and toddlers with ASD.  Since the primary visual network is one of the first to have a functional 
organization resembling that seen in adults, our findings indicate that disrupted connectivity between primary sensory 
(visual) and early higher-order (DMN) networks may cause downstream effects on the dynamics of other higher order 
networks such as those involved in social cognition and executive function.  This further suggests that atypical DMN 
function in ASD adults originates not from a gradual process of being shaped by environmental and behavioral influences 
throughout development (Johnson, 2000), but rather more directly follows Gottlieb’s model of “predetermined 
epigenesis” (1992).  Also at play could be pre- or perinatal interaction between genetics and exposure to teratogens 
(Dufour-Rainfray et al., 2011).  

Although beyond the scope of this Annual Summary Report, our current findings are consistent with the ASD 
literature pointing to prenatal pathology involving excess proliferation11, mis-migration15, excess axons25,27, patches of 
cortex with disorganized lamina15 and aberrant synapse formation and function14,16,28. Early human connectivity patterns 
require normal genesis and operation of the subplate during fetal development and multiple lines of evidence suggest its 
function is abnormal as well10. Our intrinsic connectivity results also fit well with very new DTI-based connectivity data 
on ASD infants that show an excess of aberrantly small axons in multiple cortico-cortical and cortico-subcortical tracts 
during the first two years of life25; results also show that these axons fail to grow normally. One interpretation is that such 
tract abnormalities could cause functional connectivity in diverse intrinsic networks. 
 In this context, it is notable that reports on older ASD children and adults seem to imply that what distinguishes 
ASD from TD is that ASD individuals maintain idiosyncratic over- and under-connectivity patterns whereas TD 
connectivity is more canonical 29. However, not all resting state networks appear to be equally impacted in the autistic 
brain. For instance, the DMN, but not the DAN, seems to be hypo-connected in adults 30,31 and older children 32 with ASD. 
However, DMN over-connectivity has been reported in children with ASD ages 7-11 33.  Although the DMN has received 
by far the most attention in ASD, the salience network, comprised mainly of the anterior cingulate cortex (ACC) and 
anterior insula, has also been implicated in ASD.  Uddin et al 34 found hyperconnectivity in children with ASD within 
multiple networks putatively corresponding to salience, posterior DMN, frontotemporal, motor, and primary and 
association visual networks. The salience network was by far the best classifier of ASD with 78% classification accuracy. 
 



 b. What was the impact of the project results on other disciplines, technology transfer, or society beyond 
science and technology? 
 Nothing to report at this time. 
  
5. CHANGES/PROBLEMS 
 No scientific, design or experiment problems have occurred here. The most significant staffing task completed 
was the hiring of Dr. Datko as a full-time postdoc to work on this project.  We completed pre-processing of MRI 
structural and fMRI resting state data from large samples of ASD and TD infants and toddlers as planned and we 
completed an initial set of region-seed based analyses of three intrinsic networks in these N-98 subjects. We are largely 
done with the intrinsic connectivity analyses as described above and these will be completed during the No Cost 
Extension period.  
 
6. PRODUCTS 
 Nothing to report. 
 
7. PARTICIPANTS AND OTHER COLLABORATING ORGANIZATIONS 

At the UC San Diego Site, Dr. Eric Courchesne who is Site P.I., Dr. Lisa Eyler and Dr. Michael Datko have 
worked on the project here. Dr. Eyler continues on the project at 5% due to her valuable expertise in fMRI methodology 
and autism neuroimaging. She and Dr. Courchesne advanced the projects goals and milestones successfully as seen in the 
Report above. Dr. Datko has been working on the project for the past year as a 100% postdoc.   

As per the original application, the other organizations involved as partners are the University of Texas (Dr. Fox, 
the overall Project P.I.) and Yale University (Dr. Glahn, PI at that Site).  
 
8. SPECIAL REPORTING REQUIREMENTS 

This is part of a Collaborative Award and this Progress Report is from the UC San Diego Site (Courchesne). 
 

9. APPENDICES 
See REFERENCES, below. 
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